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Filtering  the  discriminative  metabolites  from  high  dimension  metabolome  data  is  very important  in
metabolomics  study.  Support  vector  machine-recursive  feature  elimination  (SVM-RFE)  is an  efficient
feature  selection  technique  and  has  shown  promising  applications  in  the analysis  of  the  metabolome
data.  SVM-RFE  measures  the weights  of  the  features  according  to the  support  vectors,  noise  and  non-
informative  variables  in the  high  dimension  data  may  affect  the  hyper-plane  of  the SVM  learning
model.  Hence  we  proposed  a mutual  information  (MI)-SVM-RFE  method  which  filters  out  noise  and
non-informative  variables  by means  of  artificial  variables  and  MI,  then  conducts  SVM-RFE  to select  the
utual information
VM-RFE
iver diseases
etabolomics

most discriminative  features.  A  serum  metabolomics  data  set from  patients  with  chronic  hepatitis  B,  cir-
rhosis  and  hepatocellular  carcinoma  analyzed  by liquid  chromatography–mass  spectrometry  (LC–MS)
was  used  to  demonstrate  the  validation  of  our  method.  An  accuracy  of  74.33  ±  2.98%  to  distinguish
among  three  liver  diseases  was obtained,  better  than  72.00  ±  4.15%  from  the  original  SVM-RFE.  Thirty-
four  ion  features  were  defined  to distinguish  among  the  control  and  3  liver  diseases,  17  of them  were
identified.
. Introduction

Metabolomics, as a branch of systems biology, quantitatively
easures the metabolic response of living systems to environment

timuli or genetic modifications [1].  It studies the biological pro-
ess with a different view from that of genomics, proteomics and
ranscriptomics. The change of metabolite concentrations could
eflect the healthy state of a living system [2],  and tell us what
as happened. In recent years, metabolomics has shown promis-

ng applications in many fields, such as disease diagnosis [3],  drug
esearch and development [4],  etc. Cancer is one of the major dis-
ases which bother the human. Many metabolomic studies have
een conducted on liver cancer [5], lung cancer [6],  prostate cancer
7], bladder cancer [8],  etc.
Liquid chromatography–mass spectrometry (LC–MS) is one of
he main analytical techniques in metabolomics study. LC–MS

etabolomic data can bring researchers very rich information.

� This paper belongs to the Special Issue Chemometrics in Chromatography, Edited
y Pedro Araujo and Bjørn Grung.
∗ Corresponding author. Tel.: +86 411 84379530; fax: +86 411 84379559.
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ttp://dx.doi.org/10.1016/j.jchromb.2012.05.020
© 2012 Elsevier B.V. All rights reserved.

However, it also bothers the researchers for the high dimension.
There exist noisy variables besides the problem related ones people
are really interested in. To filter out the noises from the high-
dimensional data, many multivariate analytical techniques have
been adopted.

Feature selection technique is an efficient tool to select the
meaningful information from the metabolome dataset. It can be
organized into three categories: filter, wrapper and embedded
methods, depending on how it combines the feature selection
procedure with the construction of the learning model [9].  Sup-
port vector machine-recursive feature elimination (SVM-RFE) as
a popular embedded method was firstly introduced in 2002 to
do gene selection for cancer classification [10]. It is much more
robust to data over-fitting than other feature selection techniques
[10,11] and has shown its power in many fields, for example,
genomics [12], proteomics [13], metabolomics [14], etc. During
performance, it removes one feature with the smallest weight
iteratively to a feature rank until all the features have been
removed.
Removing only one feature at one time is quite time consuming,
some options have been proposed to delete a number of features
with the lowest weights in each iteration, such as E-RFE [15] and
SVM-RFE-annealing [16]. To improve the robustness of SVM-RFE

dx.doi.org/10.1016/j.jchromb.2012.05.020
http://www.sciencedirect.com/science/journal/15700232
http://www.elsevier.com/locate/chromb
mailto:xugw@dicp.ac.cn
dx.doi.org/10.1016/j.jchromb.2012.05.020
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votexing for 30 s, the mixture was  centrifuged at 15,000 × g for
ig. 1. Procedure of MI-SVM-RFE. x, c and ĉ represent the original data, original
ample class marker and predictive sample class marker, respectively.

o noise and outliers, R-SVM [17] and F-SVM [18] were proposed.
hough SVM-RFE was originally proposed for two class problems,
ow, it has been generalized to the analysis of multi-class problems
19,20].

SVM-RFE calculates the weight of each feature according to the
upport vectors of the current learning model. While the LC–MS
etabolomic data usually contain noisy features which may  affect

he optimal hyper-plane constructed by SVM and influence the
eights of the features. Therefore some meaningful features may
ot be evaluated correctly. Even worse, some meaningful fea-
ures may  be evaluated as non-meaningful due to the incorrect
yper-plane, and may  be removed in early iterations. To select
he most informative ones from the high dimension data, filter-
ng out the noises before SVM-RFE is quite helpful. The artificial
ontrast variable is an autonomous variable selection method
21]. If the importance of a variable is significantly lower than
ts permuted counterpart, the variable is non-problem related and
on-meaningful [22].

Mutual Information (MI) is a frequently used filter method to
valuate a feature’s distinguishing ability. Here we combined arti-
cial variables (AV) and MI  to filter out non-informative variables
rstly, and then conducted SVM-RFE to select the most discrimi-
ative ion features from the LC–MS data. A data set from serum
C–MS analysis of patients with chronic hepatitis B, cirrhosis and
epatocellular carcinoma was used to show the validation of our
ethod.

. Methods

The metabolome data usually contain hundreds, even thousands
f variables, there may  exist noisy variables, affecting the optimal
yper-plane constructed by SVM and the weights of the variables.

f the original data contain such information, some meaningful
eatures may  be wrongly measured as non-meaningful. To obtain
he most informative features, we propose a MI-SVM-RFE method
hich first filters out the noisy features by means of artificial vari-

bles and mutual information (AV–MI), and then selects the “best”
eature subset by SVM-RFE. The whole procedure of the method is
iven in Fig. 1.

.1. Mutual information
Mutual information as a statistic measurement can reflect how
uch information a feature contains about the class label or

nother feature. Let f denote a feature and C denote the class
 910 (2012) 149– 155

label, I(f,C) denote the mutual information between f and C. I(f,C) is
defined by the following formula [23]:

I(f ; C) =
∑m

j=1

∑n

i=1
p(fi, cj) log2

p(fi, cj)
p(fi)p(cj)

where n and m are the number of different values of f and C, respec-
tively, p(fi) is the probability of f’s value which equals to fi, p(cj) is
the probability of C’s value which equals to cj and p(fi, cj) is the joint
probability.

The mutual information between a feature and the class label
can reflect the feature’s distinguishing ability. The larger the mutual
information is, the more distinguishable the feature is.

2.2. Artificial contrast variable

By using the artificial contrast variables, non-problem related
information could be excluded automatically [21]. For a feature f in
the original data, its artificial variable ar-f is constructed by permut-
ing f’s values on the samples randomly. Hence the artificial variable
and its corresponding original feature have the same value set but
different distributions. Since the distribution of the value is rear-
ranged with randomness, if the mutual information of the original
variable with the class label C is smaller than that of the artificial
contrast one, it is more likely to be a noise.

The artificial contrast variable may  be affected by the random-
ness of the process because the values are rearranged randomly. In
order to get a more accurate measurement, the permutation is run
more than once [21]. Here we  construct t > 1 artificial contrast vari-
ables for each feature and calculate the average mutual information
of the t artificial variables with class label C. The feature whose MI
is smaller than the average mutual information of its artificial con-
trast variables is more likely to be non-informative and could be
filtered out.

2.3. SVM-RFE

After filtering out the noisy and non-related information, SVM-
RFE is adopted to select the most discriminative ion features. First,
SVM model is built on the current feature subset, the weight of each
feature is computed, r% (0 < r < 100) ion features with the smallest
weights are removed. If the number of r% current ion features is
smaller than 1, only one ion feature with the smallest weight is
removed. The iteration is continued until all the ion features have
been removed. In each iteration, the current ion feature subset is
evaluated by the k-fold cross-validation. The one with the highest
cross-validation accuracy is kept as the final selected feature subset.

3. Experimental

3.1. Sample collection and sample preparation

Thirty aliquots of fasting sera were collected from patients with
chronic hepatitis B (CHB), cirrhosis (CIR) and hepatocellular carci-
noma (HCC), respectively, from the Sixth People’s Hospital, Dalian.
Each group of patients was the age and sex matched and there were
another 30 aliquots of fasting sera from healthy volunteers as the
healthy control. Each patient has taken liver function test, tumor
markers test, ultrasonography and CT or MRI. About 1 ml serum
sample was collected and stored at −80 ◦C.

For each sample, 100 �l serum was  drawn into a centrifugal
tube with 400 �l acetonitrile added for protein precipitation. After
10 min at 4 ◦C. The supernatant was directly analyzed by LC–MS.
Equal aliquot of supernatant from each sample was pooled as

the quality control (QC) sample. The QC sample was continuously
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Table 1
Accuracy comparison of two methods.

Classification SVM-RFE (%) MI-SVM-RFE (%)

N vs M 100 100
CHB vs CIR 76.83 ± 3.09 82.67 ± 3.94
CHB vs HCC 79.83 ± 3.37 79.83 ± 3.19
X. Lin et al. / J. Chroma

un 10 times to equilibrate the column and then was  run once after
0 samples to monitor the stability of LC–MS system during sample
nalysis.

.2. Liquid chromatography–mass spectrometry analysis

An Agilent 1200 rapid resolution liquid chromatography sys-
em (Agilent, USA) used for liquid chromatographic separation
as coupled to an Agilent 6510 Q-TOF mass spectrometer (Agi-

ent, USA) with dual electrospray ionization (ESI) source used for
ata acquisition. The HILIC BEH column (100 mm × 2.1 mm,  1.7 �m)
Waters, USA) was used for the separation of polar compounds with
olumn temperature set at 35 ◦C. The chromatographic flow rate
as 0.35 ml/min. The mobile phase A was 80 mM  ammonium for-
ate modified with 0.1% (v/v) formic acid and mobile phase B was

.1% formic acid in acetonitrile. The linear gradient started with
% A, increasing to 9% A at 8 min, then to 15% A at 14 min, and
hen 50% A at 21 min, at last to 5% A at 24 min. Its total run time
as 30 min  including equilibration of 6 min. Data were acquired

n the positive ion mode with the ion source temperature set at
00 ◦C. And other source parameters were set as our previous pro-
ocol [24]. The full mass accuracy calibration was exerted before
nalysis with residual error within 0.2 ppm. And a real-time mass
alibration was performed to minimize the fluctuation of mass
uring the analysis. This ensures the stability of mass measure-
ent during the duty cycle. The robustness of LC–MS system was

nsured by the tight clustering of QC injections projected onto the
lane of principal components in the principal component analysis
PCA) [25].

.3. Data analysis

.3.1. Data pretreatment
The deconvolution of raw total ion current spectra was  per-

ormed by the Molecular Features Extraction program from Agilent.
hen, the peak alignment was done with the mass window set
s ± 0.03 Da and the retention time window set as ± 0.3 min. Then,
n excel table was exported with retention time, m/z and peak
ntensity. If the peak area of a feature is equal to zero in more
han 20% samples in each group, it was deleted [26]. The features
ith relative standard deviation (RSD) > 30% according to QC sam-
les were also excluded. Finally, 196 variables were left. For the
emaining missing values, we adopted the class-conditional mean
mputation [27,28], that is, in a group, if the peak area of a vari-
ble is equal to zero in less or equal than 30% samples, we replaced
he missing values of the variable in the group with the mean of
onzero values in that group.

.3.2. Feature selection
Pareto scaling on the training data (Fig. 1) was  adopted, the

btained parameters (mean value and standard deviation) were
pplied to the test data. The penalty factor, r and the kernel function
n SVM-RFE is set to 1, 5, and linear kernel function, respectively. The
mplementation of SVM was from LIBSVM (http://www.csie.ntu.
du.tw/∼cjlin/libsvm), MI-SVM-RFE and SVM-RFE were written in
++.

To select the important ion features related to the liver diseases,
e divide our research into five sub-objects: (1) a binary problem

o distinguish between the normal group and the disease group (N
s M);  (2) three binary problems to distinguish between every two
f CHB, CIR and HCC (i.e., CHB vs CIR, CHB vs HCC, CIR vs HCC); (3) a
hree-class problem to distinguish among CHB, CIR and HCC (CHB

s CIR vs HCC) simultaneously.

Ten-fold cross-validation was applied to evaluate the perfor-
ance of our method. In the training set, our method AV–MI is

rst performed to remove some noisy variables and t is set to 100.
CIR vs HCC 79.83 ± 4.87 85.17 ± 2.99
CHB vs CIR vs HCC 72.00 ± 4.15 74.33 ± 2.98

Then SVM-RFE is carried out to select the most discriminative ion
features (Fig. 1). The performance of the method is tested by the
test set. The ten-fold cross-validation runs 10 times to get a more
reliable result.

PCA and partial least squares discriminant analysis (PLS-DA)
were performed by SIMCA-P 11.5 (Umea, Sweden).

4. Results and discussion

4.1. Performance of MI-SVM-RFE

To demonstrate the performance of our MI-SVM-RFE method,
we compared it with the original SVM-RFE. Ten-fold cross-
validation was  run 10 times for both methods. The average
classification accuracy rate and the standard deviation were given
in Table 1. It is clear that MI-SVM-RFE outperforms the original
SVM-RFE in classification accuracy and the standard deviation.
This means: (1) our method can select virtually more discrimina-
tive features; (2) filtering out noise by artificial variable and MI  is
quite meaningful; (3) the non-problem related variables in the high
dimension metabolomic data could affect the weight calculated by
SVM learning model. The accuracy rates of MI-SVM-RFE in distin-
guishing between CHB and CIR, CIR and HCC, and among the three
diseases are 5.84%, 5.34% and 2.33% higher than those of the origi-
nal SVM-RFE (see Table 1), respectively. Though two methods have
the same accuracy rates in distinguishing between CHB and HCC,
the standard deviation of MI-SVM-RFE is much lower than that of
SVM-RFE.

Further, for binary classification cases we calculated the average
sensitivity and specificity (Table 2). It can be observed that in most
of the cases the sensitivity and specificity obtained in MI-SVM-RFE
are higher than those in SVM-RFE.

4.2. Analysis of the selected features

Since the ten-fold cross-validation was run 10 times, there were
100 selected feature subsets in each research sub-object, the fre-
quency of each feature in the 100 feature subsets was computed.
And the features were ranked according to their frequency in a
descending order. Thus the top ranked features are the most infor-
mative ones. Here 15 top ranked features were chosen in each
classification described in Table 1. Totally 34 ion features were
got from the 5 classifications, among which 33 ion features were
got from 3 binary classifications to distinguish between every two
of CHB, CIR and HCC, and the three-class problem to distinguish
among CHB, CIR and HCC, simultaneously.

Fig. 2A and B shows the PCA score plots of the original data
and the selected 34 ion features. Similarly, PCA plots of the three
liver diseases are given in Fig. 3. From Fig. 2A and Fig. 3A, it can
be seen that all the samples including normal ones and those of
the three liver diseases are mixed together due to the noisy and
non-informative variables. In Fig. 2B and Fig. 3B,  different classes

of the samples show a clear separated trend, it means that MI-SVM-
RFE is quite effective in selecting the discriminative features. Fig. 4
shows the PLS-DA score plot of the three liver diseases based on
the selected 33 ion features. Three different liver disease groups

http://www.csie.ntu.%20edu.tw/~cjlin/libsvm
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Table 2
Comparison of sensitivity and specificity*

Classification SVM-RFE sensitivity (%) MI-SVM-RFE sensitivity (%) SVM-RFE specificity (%) MI-SVM-RFE specificity (%)

N vs M 100 100 100 100
CHB  vs CIR 76.00 ± 4.66 81.33 ± 6.13 77.67 ± 5.22 84.00 ± 4.92
CHB  vs HCC 79.00 ± 2.74 78.00 ± 3.91 80.67 ± 5.84 81.67 ± 4.23
CIR  vs HCC 78.67 ± 5.92 83.00 ± 5.76 81.00 ± 5.45 87.33 ± 5.16
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* In each run of ten-fold cross-validation, every sample is used as a test sample
alculated. As the ten-fold cross-validation runs 10 times, the average specificity an

re clearly separated. R2-intercept and Q2-intercept are 0.196 and
0.316, respectively, implying that the PLS-DA model does not
verfit the data.

Based on our previous method [29], of the 34 ion fea-
ures, 17 ions were identified (see Table 3) including two
hosphatidylethanolamines (PEs), five acyl-carnitines (acyl-CNs),
arnitine, lysophosphatidylcholine (18:2) (lysoPC (18:2)) and sph-
ngomyelin (d18:0/22:2 (OH)) (SM (d18:0/22:2 (OH)). Among these
dentified compounds, 11 compounds are differentially expressed
n CIR and CHB. PC (18:2/18:3), pimelylcarnitine and acetylcarni-
ine etc. contribute to the discrimination of HCC from CHB. And SM
d18:0/22:2 (OH)), pimelylcarnitine and carnitine etc. contribute
o the discrimination of HCC from CIR. The compounds identified
bove involved in fatty acid oxidation, phospholipid metabolism
hich are closely associated with the development of chronic liver

iseases (CHB and CIR) and HCC [30].

Long-chain acyl-CNs are responsible for the transportation of
atty acids into mitochondria for �-oxidation. The accumulation of
16:1-CN (Fig. 5A) and C18:1-CN (Fig. 5B) in CIR and HCC compared

Fig. 2. Score plots of PCA based on (A) original data and (B) 34 selected ion featur
and gets a predicted class label based on which the sensibility and specificity are
tandard deviation is calculated.

to CHB and healthy control demonstrate that there are significant
metabolic changes involved in fatty acid oxidation in more severe
liver diseases (CIR and HCC). And the alteration of these two serum
long-chain acyl-CNs are consistent with the observation in our pre-
vious investigation using reversed-phase liquid chromatography
separation method [31].

Carnitine (Fig. 5C) is essential for fatty acid �-oxidation in
mitochondria [32]. And urinary carnitine has been reported ele-
vated in HCC cases in comparison to healthy control and cirrhosis,
which may  result from tumor overproduction of carnitine for
mitochondria �-oxidation to support elevated metabolic activ-
ity and high cell-turnover in HCC [33,34].  And it is also reported
that carnitine can protect mitochondria from oxidative damage
[35,36] and a long-term administration of l-carnitine has been
observed to inhibit hepatitis and subsequent hepatocellular car-

cinoma in Long–Evans Cinnamon rats [37]. So, the lower level of
carnitine in CHB and CIR cases compared to healthy control may
imply a severe liver mitochondria injury. By contrast, the serum
carnitine increases in HCC cases compared to CIR, this may be

es. N (box), CHB (inverted triangle), CIR (circle) and HCC (star) are displayed.
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Fig. 3. Score plots of PCA based on (A) original data and (B) 33 selected

xplained by the need of overproduction of carnitine by tumor.
imelylcarnitine is elevated in HCC compared to CIR, with sig-
ificant differences compared with the contents in CIR and CHB.
imelylcarnitine (Fig. 5D) is an ester form of pimelic acid, a dicar-
oxylic acid [38]. It is reported that most of the carbon atoms of
ssential biotin are derived from pimelic acid. The detailed relation-
hip of pimelylcarnitine level to cancer metabolism needs further

esearch.

Phospholipids are important ingredients of cell membrane. The
lteration of phospholipids content may  influence the membrane

Fig. 4. Score plot of PLS-DA based on 33 selected ion features. CHB
atures. CHB (inverted triangle), CIR (circle) and HCC (star) are displayed.

fluidity, whose increase may  link to hepatocyte regeneration and
carcinogenesis [39,40]. In comparison to healthy control, the level
of PE (22:6/16:0) (Fig. 5E) and PE (20:4/18:0) (Fig. 5F) in HCC are
significantly increased. The increase of PE and cholesterol in cell
membrane has been reported mainly causing the increase of mem-
brane fluidity in regenerating liver and hepatocyte nodules of rats
[41]. And the increase of polyunsaturated fatty acid in PE may affect

apoptosis through attenuating free polyunsaturated fatty acid level,
while the increase in fatty acid unsaturation of PE doesn’t affect
membrane fluidity directly [41].

 (inverted triangle), CIR (circle) and HCC (star) are displayed.
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Table 3
17 identified ion features and p values in different classes.

tR (min) MASS Metabolite N vs M CHB vs CIR CHB vs HCC CIR vs HCC

1.019 362.21 Cortisol 3.18e−01 7.41e−06** 5.35e−01 6.44e−03**

7.781 626.53 PE (20:4/18:0) fragment 2.65e−01 2.97e−02* 5.65e−01 1.08e−02*

7.849 763.52 PE (22:6/16:0) 2.17e−03** 2.40e−03** 3.32e−01 1.02e−01
10.592  447.33 C18:1-CN [M+Na]+1 1.67e−02* 3.56e−03** 7.98e−02 3.48e−01
11.042  397.33 C16:1-CN 5.78e−02 6.89e−07** 5.16e−03** 5.50e−01
11.475  817.51 PC (18:2/18:3) [M+K]+1 4.79e−01 4.76e−09** 1.12e−06** 1.62e−01
11.509  765.56 PC (P-16:0/20:4) 1.85e−01 4.13e−03** 2.17e−02* 7.71e−02
11.852  769.51 PC (16:1/16:0) [M+K]+1 5.02e−08** 6.71e−06** 7.67e−04** 7.29e−02
11.889  733.56 PC (16:0/16:0) 7.26e−09** 3.85e−05** 2.16e−05** 9.55e−01
12.018  705.53 PC (16:0/14:0) 2.45e−08** 3.92e−02* 2.12e−01 3.18e−01
12.146  256.17 C10-CN fragment 6.27e−09** 8.60e−04** 4.63e−02* 1.24e−01
13.676  798.66 SM (d18:0/22:2(13Z,16Z)(OH)) 8.48e−02 3.89e−01 5.25e−02 1.11e−02*

14.545 541.31 LysoPC (18:2) [M+Na]+1 1.21e−11** 5.03e−01 4.25e−01 1.73e−01
15.116  303.20 Pimelylcarnitine 1.83e−03** 3.48e−01 3.29e−05** 3.14e−04**

16.209 143.09 l-Acetylcarnitine fragment 4.39e−01 2.68e−01 1.08e−04** 3.24e−03**

16.919 102.03 l-Carnitine fragment 9.97e−03** 5.51e−02 1.58e−01 5.56e−03**

16.922 101.08 l-Carnitine fragment 9.75e−03** 2.78e−02* 1.36e−01 2.58e−03**

*t-test p < 0.05.
**t-test p < 0.01.
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ig. 5. Six important ion features selected. (A) C16:1-CN; (B) C18:1-CN [M+Na]+1; (C
he  error bar was  ±SEM of the mean. The significance level was labbled with one a

. Conclusion

In this paper, we proposed a MI-SVM-RFE method which com-
ines the artificial variables and mutual information to filter out
he noisy variables from the high dimension metabolome data, and
hen selects the most discriminative ion features by SVM-RFE. A
iver disease metabolome data set from LC–MS was  used to vali-
ate our new method. The ten-fold cross validation showed that
fter removing the apparent non-related information, the weight
f the features could be calculated more accurately, the average
ccuracy, sensitivity and specificity were improved.
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